Calculates average response and differences in average response under counterfactual treatment policies.
Estimates are produced using provided inverse probability weighted (IPW) or augmented inverse probability weighted (AIPW) scores paired with various adaptive weighting schemes, as proposed in hadad2021confidence;textualbanditsCI and zhan2021off;textualbanditsCI.
We briefly outline the target quantities:
For observations indexed \(t \in \{1,\dots,A\}\), treatments \(w \in \{1,\dots,K\}\), we denote as \(Y_t(w)\) the potential outcome for the unit at time \(t\) under treatment \(w\).
A policy \(\pi\) is a treatment assignment procedure that is the subject of evaluation, described in terms of treatment assignment probabilities for each subject to receive each counterfactual treatment.
We target estimation of average response under a specified policy:
$$Q(\pi) := \sum_{w = 1}^{K}\textrm{E}\left[\pi(w)Y_t(w)\right]$$
The user may specify a list of list of policies to be evaluated, under policy1
.
Alternatively, they may estimate policy contrasts if policy0
is provided:
$$\Delta(\pi^1,\pi^2) := Q(\pi^1) - Q(\pi^2) $$
Usage
output_estimates(
policy0 = NULL,
policy1,
contrasts = "combined",
gammahat,
probs_array,
uniform = TRUE,
non_contextual_minvar = TRUE,
contextual_minvar = TRUE,
non_contextual_stablevar = TRUE,
contextual_stablevar = TRUE,
non_contextual_twopoint = TRUE,
floor_decay = 0
)
Arguments
- policy0
Optional matrix. Single policy probability matrix for contrast evaluation, dimensions
[A, K]
. Each row represents treatment assignment probabilities for an individual subject, and so rows must sum to 1. Whenpolicy0 = NULL
, the function estimates the value \(Q(\pi)\) of each policy matrix listed inpolicy1
. Whenpolicy0
is non-null, the function estimates differences in average response under each of the component policies inpolicy1
and the single policy inpolicy0
. Must not contain NA values if provided.- policy1
List of matrices. List of counterfactual policy matrices for evaluation, dimensions
[A, K]
. Each row represents treatment assignment probabilities for an individual subject, and so rows must sum to 1. Must not contain NA values.- contrasts
Character. The method to estimate policy contrasts, either
combined
orseparate
, discussed in hadad2021confidence;textualbanditsCI Section 3.combined
indicates the difference in (A)IPW scores is directly used as the unbiased scoring rule for \(\Delta (\pi^1, \pi^2)\);separate
indicates that scores are used separately \(\hat \Delta (\pi^1, \pi^2) = \hat Q (w_1) - \hat Q (w_2)\).- gammahat
(A)IPW scores matrix with dimensions
[A, K]
in non-contextual settings, or[A, A, K]
contextual settings. Dimensions represent time, (contexts,) treatment arms. Dimensions ofgammahat
andprobs_array
must be the same. Must not contain NA values.- probs_array
Numeric array. Probability matrix or array with dimensions
[A, K]
in non-contextual settings, or[A, A, K]
contextual settings. Dimensions represent time, (contexts,) treatment arms. Dimensions ofgammahat
andprobs_array
must be the same. Must not contain NA values.- uniform
Logical. Estimate uniform weights.
- non_contextual_minvar
Logical. Estimate non-contextual
MinVar
weights described in zhan2021off;textualbanditsCI Section 4.- contextual_minvar
Logical. Estimate contextual
MinVar
weights described in zhan2021off;textualbanditsCI Section 4.- non_contextual_stablevar
Logical. Estimate non-contextual
StableVar
weights described in zhan2021off;textualbanditsCI Section 4.- contextual_stablevar
Logical. Estimate contextual
StableVar
weights described in zhan2021off;textualbanditsCI Section 4.- non_contextual_twopoint
Logical. Estimate
two-point
allocation weights described in hadad2021confidence;textualbanditsCI Section 2.- floor_decay
Numeric. Floor decay parameter used in the calculation. Default is 0.
Examples
set.seed(123)
# In a non-contextual setting, generate example values for policy1, gammahat, and probs_array
gammahat <- matrix(c(0.5, 0.8, 0.6,
0.3, 0.9, 0.2,
0.5, 0.7, 0.4,
0.8, 0.2, 0.6), ncol = 3, byrow = TRUE)
policy0 <- matrix(c(1, 0, 0,
1, 0, 0,
1, 0, 0,
1, 0, 0), ncol = 3, byrow = TRUE)
policy1 <- list(matrix(c(0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0), ncol = 3, byrow = TRUE))
probs_array <- array(0, dim = c(4, 4, 3))
for (i in 1:4) {
temp_vector <- runif(3)
normalized_vector <- temp_vector / sum(temp_vector)
probs_array[i, 1, ] <- normalized_vector
}
for (k in 1:3) {
for (i in 1:4) {
temp_vector <- runif(3)
normalized_vector <- temp_vector / sum(temp_vector)
probs_array[i, 2:4, k] <- normalized_vector
}
}
estimates <- output_estimates(policy1 = policy1,
policy0 = policy0,
gammahat = gammahat,
probs_array = probs_array)
# plot
plot_results <- function(result) {
estimates <- result[, "estimate"]
std.errors <- result[, "std.error"]
labels <- rownames(result)
# Define the limits for the x-axis based on estimates and std.errors
xlims <- c(min(estimates - 2*std.errors), max(estimates + 2*std.errors))
# Create the basic error bar plot using base R
invisible(
plot(estimates, 1:length(estimates), xlim = xlims, xaxt = "n",
xlab = "Coefficient Estimate", ylab = "",
yaxt = "n", pch = 16, las = 1, main = "Coefficients and CIs")
)
# Add y-axis labels
invisible(
axis(2, at = 1:length(estimates), labels = labels, las = 1, tick = FALSE,
line = 0.5)
)
# Add the x-axis values
x_ticks <- x_ticks <- seq(from = round(xlims[1], .5),
to = round(xlims[2], .5), by = 0.5)
invisible(
axis(1,
at = x_ticks,
labels = x_ticks)
)
# Add error bars
invisible(
segments(estimates - std.errors,
1:length(estimates),
estimates + std.errors,
1:length(estimates))
)
}
sample_result <- estimates[[1]]
op <- par(no.readonly = TRUE)
par(mar=c(5, 12, 4, 2))
plot_results(sample_result)
par(op)